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The spectral density of various ensembles of sparse symmetric random matrices is analyzed using the cavity
method. We consider two cases: matrices whose associated graphs are locally treelike, and sparse covariance
matrices. We derive a closed set of equations from which the density of eigenvalues can be efficiently calcu-
lated. Within this approach, the Wigner semicircle law for Gaussian matrices and the Marčenko-Pastur law for
covariance matrices are recovered easily. Our results are compared with numerical diagonalization, showing
excellent agreement.
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I. INTRODUCTION

What started as an approximation to the complex Hamil-
tonian of heavy nuclei has become a very interesting area of
research in its own right. Although the statistical properties
of random matrices had been tackled before, it was that treat-
ment by Wigner in nuclear physics during the 1950s which
boosted the research into what is currently known as random
matrix theory �RMT� �1�. The list of applications of this
theory has been expanding ever since, ranging from physics
to computer science and finance. Specifically, applications in
physics include nuclear theory, quantum chaos, localization,
theory of complex networks, and more �see, for instance, �2�
for an extensive review�.

From a theoretical and practical viewpoint, one of the
central quantities of interest in RMT is the spectral density of
an ensemble of random matrices. While some cases have
been completely analyzed during the last decades, many oth-
ers have not been fully explored. Consider, for instance, the
ensemble of symmetric random matrices whose entries are
independently and identically distributed Gaussian variables.
Among many of its properties, it is well known that its spec-
tral density is given by the Wigner semicircle law �1,3,4�.
Another instance is the ensemble of covariance matrices,
whose spectral density is given by the Marčenko-Pastur law
�5�. And the list continues.

Interestingly, the change of introducing sparsity in such
ensembles, i.e., many entries being zero, complicates the
mathematical analysis enormously �6–10�. Lacking more
powerful mathematical tools, one must rely on approxima-
tive schemes to the spectral density, e.g., the effective me-
dium approximation �EMA�, or the single defect approxima-
tion �SDA� �8–10�.

In this work, we tackle the problem of evaluating the
spectral density of sparse random matrices by using the cav-
ity method �11,12�. As we will show, this approach may offer
new theoretical and practical advantages: from a theoretical
point of view, it offers an alternative, and we believe easier,
method to �re�derive the spectral density; practically, the re-
sulting cavity equations can be interpreted as a belief-
propagation algorithm on single instances, which can be then

easily implemented. The resulting spectral density is a clear
improvement over those obtained by approximative schemes.
A complementary study using the replica method and em-
phasizing ensemble aspects has been presented elsewhere
�13�.

This work is organized as follows. In Sec. II we first
mention how the spectral density can be recast as a problem
of interacting particles on a graph. The subsequent problem
is then analyzed by the cavity method in two cases: locally
treelike graphs and sparse covariance matrices. We derive
cavity equations for large single instances and check that the
dense limit gives the correct results. In Sec. III we use the
cavity equations as an algorithm to calculate the spectral
density and compare these results with numerical diagonal-
ization. The last section is for conclusions.

II. CAVITY APPROACH TO THE SPECTRAL DENSITY

Consider an ensemble M of N�N symmetric matrices. If
we denote by ��i

A�i=1,. . .,N the set of eigenvalues of a given
matrix A�M, its spectral density is defined as follows:

�A��� =
1

N
�
i=1

N

��� − �i
A� . �1�

The spectral density of the ensemble, denoted as ����, results
from averaging �A��� over M. As was shown by Edwards
and Jones �4�, the density �1� can be rewritten as

�A��� = − lim
�→0+

2

�N
Im� �

�z
ln ZA�z�	

z=�−i�
, �2�

where

ZA�z� =
 ��
i=1

N
dxi

�2�
	exp�−

1

2 �
i,j=1

N

xi�zI − A�ijxj	 . �3�

In writing the expression �3�, we have been careless with the
Gaussian integrals, so that as they stand they are not gener-
ally convergent; we simply follow the prescription as in
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�14,15�, and do not worry unnecessarily about imaginary fac-
tors, so that we can introduce a Gibbs-Boltzmann probability
distribution of x, viz.,

PA�x� =
1

ZA�z�
e−HA�x,z� �4�

with

HA�x,z� =
1

2 �
�i,j��GA

N

xi�zI − A�ijxj . �5�

In this way, the spectral density �A��� is recast into a statis-
tical mechanics problem of N interacting particles x
= �x1 , . . . ,xN� on a graph GA with effective Hamiltonian �5�.
By GA we refer to a weighted graph with N nodes and edges
for each interacting pair �i , j� with weight Aij, when Aij�0.
For later use, we introduce the following notation: the set of
neighbors of a node i will be denoted as �i; for a given subset
of nodes B we define xB= �x�1

, . . . ,x�B
� with �1 , . . . ,�B

�B and with B the number of nodes of B; ki= �i denotes
the number of neighbors of node i, while c= �1 /N��i=1

N ki is
the average connectivity. Note that within this approach Eq.
�1� for the spectral density �A��� can be rewritten as follows:

�A��� = lim
�→0+

1

�N
�
i=1

N

Im��xi
2�z�z=�−i�, �6�

where �¯�z denotes the average over distribution �4�.
In previous works �4,7–10�, the averaged spectral density

���� is dealt with by using the replica approach, or in �16,17�
using supersymmetric methods. For general sparse matrices,
it was shown in �7–10,16� that the analysis of the resulting
equations from either the replica or the supersymmetric
methods was a rather daunting task. To push the analysis
further, the authors in �9,10� resorted to a series of approxi-
mative schemes, originally introduced in �8�. The simplest of
such approximations, the EMA, assumes that all nodes are
equivalent and play the same role �8–10�. This type of ap-
proximation works better the larger the average connectivity
c of the graph. However, for low and moderate values of c it
fails to provide an accurate description of the central part and
the tails �see, for instance, �9�� and of the presence of
weighted Dirac � peaks in the spectral density �18,19�. Other
approximations, like the SDA, also fail to give an accurate
description of the spectrum.

To improve our understanding of spectral properties of
sparse matrices, we tackle the problem from a different per-
spective. Instead of considering the averaged spectral density
����, we note, as shown in Eq. �6�, that to calculate �A��� we
simply need the local marginals Pi�xi� from the Gibbs-
Boltzmann distribution PA�x�. The cavity method offers a
way to calculate them.1 To illustrate this we consider two
cases: the ensemble of symmetric locally treelike sparse ma-
trices, and the ensemble of sparse covariance matrices.

A. Treelike symmetric matrices

Let us start by analyzing the spectral density of sparse
graphs GA which are treelike, like the one depicted in Fig. 1.
By treelike, we mean that short loops are rare. Due to the
treelike structure we note that, for each node i, the joint
distribution of its neighborhood P�x�i� is correlated mainly
through the node i. If, instead of the original graph GA, we
consider a system where the node i is removed �see Fig. 1�,
on the resulting cavity graph GA

�i� the joint distribution
P�i��x�i� factorizes, i.e.,

P�i��x�i� = �
���i

P�
�i��x�� . �7�

This factorization, which is exact on trees, is called the Bethe
approximation. On the cavity graph, the set of cavity distri-
butions �Pi

�j��xi�� obeys simple recursive equations, viz.,

Pi
�j��xi� =

e−zxi
2/2

Zi
�j� 
 dx�i\j exp�xi �

���i\j
Ai�x�	 �

���i\j
P�

�i��x��

�8�

for all i=1, . . . ,N and for all j��i. Once the cavity distribu-
tions are known, the marginal distributions Pi�xi� of the
original system GA are given by

Pi�xi� =
e−zxi

2/2

Zi

 dx�i exp�xi �

���i

Ai�x�	 �
���i

P�
�i��x�� �9�

for all i=1, . . . ,N. While there is in general no a priori rea-
son to expect cavity distributions to be simple, they are for
the present system: the set �8� of equations is clearly self-
consistently solved by Gaussian Pi

�j�’s. Hence, upon assum-
ing the cavity distributions to be Gaussian, namely,

P�
�i��x� =

1

�2�	�
�i�

e−�1/2	�
�i��x2

, �10�

the set of equations �8� is transformed into a set of equations
for the cavity variances 	 j

�i��z�, viz.,

	i
�j��z� =

1

z − ����i\jAi�
2 	�

�i��z�
�11�

for all i=1, . . . ,N and for all j��i. Similarly, by Eq. �9� the
marginals Pi�xi� are Gaussian with variance 	i related to the
cavity variances by

1This approach was used in �23� within the context of Anderson
localization.

i

j k

l

j k

l

FIG. 1. Left: Part of a treelike graph GA showing the neighbor-
hood of node i. Right: Upon removal of node i, on the resulting
cavity graph GA

�i�, the neighboring sites j, k, and l become
uncorrelated.
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	i�z� =
1

z − ����iAi�
2 	�

�i��z�
. �12�

Equations �11� and �12� comprise the final result. For a given
graph GA, one iterates the cavity Eq. �11� until convergence
is reached. Once the cavity variances are known, the vari-
ances 	i are given by Eq. �12�, from which the spectral den-
sity �A��� is obtained by

�A��� = lim
�→0+

1

�N
�
i=1

N

Im�	i�z��z=�−i�. �13�

It is worth noting that equations equivalent to those in �11�
can be derived by the method described in �20� and can be
related to self-returning random walks �6,21�.

Notice also that the set of cavity equations must be solved
for complex z=�− i�, so that the cavity variances are in gen-
eral complex, and then the limit �→0+ is performed. Instead,
we perform this limit explicitly in the cavity equations. To do
so, we separate these equations into their real and imaginary
parts and then perform explicitly the limit �→0+ by naively
assuming that the imaginary part is nonvanishing in such a
limit �see the discussion below�. Denoting �ai

�j� ,bi
�j��

= �Re�	i
�j�� , Im�	i

�j���, we obtain

ai
�j� =

� − hi
�j��a�

�� − hi
�j��a��2 + �hi

�j��b��2 , �14�

bi
�j� =

hi
�j��b�

�� − hi
�j��a��2 + �hi

�j��b��2

with

hi
�j��v� = �

���i\j
Ai�

2 v�
�i�. �15�

Our results are exact, as long as the average connectivity c of
the graphs considered remains finite in the limit N→
.

Large-c limit: The Wigner semicircle law

To assess our approach, note that from the set of equations
�11� and �12� we can easily recover the Wigner semicircle
law in the large-c limit. By this limit we understand that ki
→c and c→
, and assume that the graph is already “infi-
nitely” large.2 To perform this large-c limit, we take the en-
tries of the matrix A to be Aij =Jij /�c, with Jij �=Jji� a Gauss-
ian variable with zero mean and variance J2. From Eqs. �11�
and �12�, we note that, for large c, we have that 	i

�j��z�
=	i�z�+O�c−1�.3 Upon defining

	 = lim
c→


1

c �
���i

	�, �16�

we obtain that

lim
c→


�
���i

Ai�
2 	�

�i� = lim
c→


1

c �
���i

Ji�
2 	�

�i� = J2	 . �17�

Thus, in the large-c limit, Eq. �12� yields

	 =
1

z − J2	
, �18�

which gives the well-known Wigner semicircle law �3�

���� =
1

2�J2
�4J2 − �2. �19�

B. Covariance matrices

Let us consider now matrices A of the type

Aij =
1

d
�
�=1

P

�i�� j�, �20�

where � is an N� P matrix with entries �i�. To this matrix
we can associate a bipartite graph G� with N+ P nodes, di-
vided into two sets indexed by i=1, . . . ,N and �=1, . . . , P
�see Fig. 2�. A pair of nodes �i ,�� is connected if �i��0. We
refer to these nodes as x nodes and m nodes, respectively.
We will consider the bipartite graph G� to be treelike, i.e.,
many of the entries �i� are zero. We also introduce d
= �1 / P���=1

P k� with k�= ��, i.e., the average connectivity
of the m nodes. Clearly, c=d with = P /N. In this case it is
more convenient to apply the cavity method on the bipartite
graph G�. To do so we write the effective Hamiltonian �5� as
follows:

HA�x,z� =
1

2
z�

i=1

N

xi
2 −

1

2 �
�=1

P

m�
2 �x��� , �21�

where we have defined the overlaps

m��x��� =
1
�d

�
i���

�i�xi. �22�

Note that, due to our choice for � and the relation �20� be-
tween the matrices A and �, the corresponding graph GA �see
Fig. 2� is locally cliquelike with self-interactions.

2Alternatively, one could naively take c→N and then N→
. In
the complete, or fully connected, graph �c=N� the cavity equations
are still valid, but the reason for the decorrelation is statistical rather
than topological.

3This is the usual derivation of Thouless-Anderson-Palmer �TAP�
equations from the cavity equations. In this case the difference be-
tween cavity fields and effective fields does not produce an Onsager
reaction term.

i
i

µ

FIG. 2. Left: Graph GA for covariance matrices. Right: Bipartite
graph G� for the matrix �. For sake of clarity, self-interactions in the
graph GA are not drawn.
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We work our cavity equations in the bipartite graph G�.
Here, the variables x are on the x nodes while the variables
m= �m1 , . . . ,mp� are on the m nodes. Since we have two
types of nodes, we apply the cavity method twice: around x
nodes and around m nodes. We define Q�

�i��m�� as the cavity
distribution of m� in the absence of a node i, and Pi

����xi� is
the cavity distribution of xi in the absence of node �. We find
the following set of equations for these cavity distributions:

Pi
����xi� =

e−zxi
2/2

Zi
��� 
 dm�i\� exp�1

2 �
���i\�

�m� +
1
�d

�i�xi	2�
� �

���i\�
Q�

�i��m�� �23�

for all i=1, . . . ,N and ���i. Also,

Q�
�i��m�� =

1

Z�
�i� 
 dx��\i��m� −

1
�d

�
����\i

���x�	
� �

����\i
P�

����x�� �24�

for all �=1, . . . , P and i���. Obviously, for the marginal
distributions Pi�xi� we obtain

Pi�xi� =
e−zxi

2/2

Zi

 dm�i exp�1

2 �
���i

�m� +
1
�d

�i�xi	2�
� �

���i

Q�
�i��m�� �25�

for all i=1, . . . ,N. As before, we see from the set of equa-
tions �23� and �24� that the Gaussian measure is a fixed
point. Thus, by taking Pi

����xi� and Q�
�i��m�� to be Gaussian

distributions with zero mean and variances 	i
��� and ��

�i�, re-
spectively, we obtain the following set of equations for the
cavity variances

	i
����z� =

1

z −
1

d
����i\��i�

2 1

1 − ��
�i��z�

,

��
�i��z� =

1

d
�

����\i
���

2 	�
����z� . �26�

Similarly, if we denote with 	i the variance of the marginal
Pi�xi� on the original graph G�, we obtain

	i�z� =
1

z −
1

d
����i�i�

2 1

1 − ��
�i��z�

. �27�

Large-c limit: The Marčenko-Pastur law

For the sake of simplicity we take the nonzero entries of
the matrix � to have values �1, so that �i�

2 =1 in Eqs. �26�
and �27�. Let us consider the spectral density in the large-c
limit of the bipartite graph G�. By this limit we mean k�

→d, ki→c, and d ,c→
 while  remains finite. As before,
the difference between cavity variances and variances is
O�c−1�. If we define

	 = lim
d→


1

d �
����

	� = lim
d→


1

d�
�=1

d

	� �28�

from Eq. �27� we obtain

	 =
1

z − 
1

1 − 	

. �29�

Upon solving this equation for Im�	� we obtain the
Marčenko-Pastur law �5� of dense covariance matrices,

���� =
1

2��
�− �2 + 2�� + 1� + � − 1�2 + C0�1 − ����� ,

�30�

with C0=1 for �1 and C0=0 for �1. A slightly different
expression is found by Nakanishi and Takayama �22�, where
the difference comes from not considering the diagonal
terms. This could also be implemented fairly straightfor-
wardly to obtain the spectral density as in �22�.

III. NUMERICAL RESULTS AND COMPARISON

For general sparse matrices, we solve the cavity equations
numerically and compare the results with exact numerical
diagonalization. We consider again the two cases of locally
treelike and sparse covariance matrices.

A. Treelike symmetric matrices

To test our cavity equations, we choose Poissonian graphs
GA where each entry Aij of the N�N matrix A is drawn
independently from

P�Aij� =
c

N
��Aij� + �1 −

c

N
	��Aij� �31�

with c the average connectivity, and ��x� is the distribution
of nonzero edge weights. For the distribution of weights we
study two cases: the bimodal distribution, i.e.,

��Aij� =
1

2
��Aij − 1� +

1

2
��Aij + 1� , �32�

and the Gaussian distribution with zero mean and variance
1 /c.

For the purpose of fairly comparing later with exact nu-
merical diagonalization, we have analyzed the cavity equa-
tions for rather small matrices. However, we have checked
that the convergence of these equations is generally fairly
fast and we are able to evaluate the spectral density of very
large matrices in reasonable time. In both the bimodal and
the Gaussian cases, we generated matrices with N=1000. For
each matrix we run our cavity equations �11� until conver-
gence is reached and then obtain the spectral density from
Eqs. �12�. The result is averaged over 1000 samples. For
such sizes we have also calculated the spectral density by
exact numerical diagonalization and averaged over 1000
samples.

ROGERS et al. PHYSICAL REVIEW E 78, 031116 �2008�

031116-4



The numerical results from the cavity approach and exact
numerical diagonalization for the bimodal case are plotted in
Fig. 3 for average connectivity c=3. We have also compared
our results with the spectral density obtained by the EMA
and SDA �see �6,8,9� for details about the approximations�.
As we can see, our results are a clear improvement over the
EMA and SDA results, as they are in excellent agreement
with numerical diagonalization. Even the tail of the spec-
trum, usually not obtained with these approximations, �see
inset of Fig. 3�, is well reproduced by our approach.

It is well known that the spectrum of these types of en-
sembles contains a dense collection of Dirac � peaks �18,19�,
which are not fully captured by the previous approximations.
Without a prior analysis, one wonders how the cavity equa-
tions can be used to obtain such contributions. A practical
way out is to reconsider the limit �→0, by leaving a small
value of � in the cavity equations, which implies approximat-
ing Dirac �’s by Lorentzian peaks. In Fig. 4 we have rerun
the set of equations �11� and �12� with a small value of �.
The Dirac � contributions, whose exact positions within the
spectral density are discussed in �18�, are now clearly visible.
A more detailed study on this issue within the context of
localization can be found in �13�.

In Fig. 5 we plot the results of both numerical diagonal-
ization and the cavity method when ��x� is a Gaussian dis-
tribution with zero mean and variance 1 /c. Once again, our
results are in excellent agreement with the numerical simu-
lations.

B. Covariance matrices

We have also analyzed numerically in the case of sparse
covariance matrices. Here the entries �i� of the N� P matrix
� are drawn according to the distribution

P��i�� =
d

N
���i�� + �1 −

d

N
	���i�� , �33�

where ���i�� is a bimodal distribution,

���i�� =
1

2
���i� + 1� +

1

2
���i� − 1� . �34�

In Fig. 6, we compare the results of direct diagonalization,
the cavity method, and the symmetric effective medium ap-
proximation �SEMA�, introduced in �10�; here we make the
same choice of parameters. The inset figure shows details of
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FIG. 3. �Color online� Spectral density of Poissonian graphs
with bimodal edge weights and average connectivity c=3. Red
square markers are the results of numerical diagonalization with
N=1000, averaged over 1000 samples. Blue circles are the results
of the cavity approach with N=1000, averaged over 1000 samples.
The dashed line corresponds to the SDA and the dotted line is the
EMA. The inset shows the tail of the spectral density.
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FIG. 4. �Color online� Comparison of cavity equations for �
=0 �blue circles� and 0.005 �continuous red line�, for Poissonian
graphs with bimodal edge weights and average connectivity c=3
�N=1000 and average over 1000 samples�. The inset shows the
Dirac � structure in the central region.
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FIG. 5. �Color online� Spectral density of Poissonian graphs
with Gaussian edge weights and average connectivity c=4. Red
square markers are for the results of numerical diagonalization with
N=1000, averaged over 1000 samples. Blue circles are results of
the cavity approach with N=1000 and average over 1000 samples.
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the tail region of the plot, where the difference between the
SEMA and the other results can be clearly seen.

IV. CONCLUSIONS

In this work, we have reexamined the spectral density of
ensembles of sparse random symmetric matrices. By follow-
ing Edwards and Jones �4�, we have mapped the problem
into an interacting system of particles on a sparse graph,
which was then analyzed by the cavity approach. Within this
framework, we have derived cavity equations on single in-
stances and used them to calculate the spectral densities of

sparse symmetric matrices. Our results are in good agree-
ment with numerical diagonalization and are a clear im-
provement to previous works based on approximative
schemes. We have also shown that, to account for the Dirac
� contribution to the spectrum, one may approximate Dirac �
peaks by Lorentzians, by leaving a small value for � �13�.

It is well known that cavity and replica methods are
equivalent �see, for instance, �12� for diluted spin glasses�, so
one may wonder in which aspects our work differs from the
ones presented in �7–10�. Generally, for interacting diluted
systems with continuous dynamical variables, one expects an
infinite number of cavity fields to parametrize the cavity dis-
tributions. The authors in �7–10� decided to tackle such a
daunting task by resorting to approximations. In this work,
we simply realize that, for the problem at hand, the cavity
distributions are Gaussian, so that the problem can be solved
exactly by self-consitently determining the variances of these
distributions.

In future studies we expect to extend the method pre-
sented here to the analysis of more general aspects of random
matrices.
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FIG. 6. �Color online� Spectral density of covariance matrices
with N=4000, d=12, =0.3. Average over 1000 samples. Red
square markers are for the results of numerical diagonalization.
Blue circles are results of the cavity approach. The dashed line
corresponds to the SEMA.
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